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Importance sampling of rare transition events in Markov processes
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We present an importance sampling technique for enhancing the efficiency of sampling rare transition events
in Markov processes. Our approach is based on the design of an importance function by which the absolute
probability of sampling a successful transition event is significantly enhanced, while preserving the relative
probabilities among different successful transition paths. The method features an iterative stochastic algorithm
for determining the optimal importance function. Given that the probability of sampling a successful transition
event is enhanced by a known amount, transition rates can be readily computed. The method is illustrated in
one- and two-dimensional systems.
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[. INTRODUCTION specific approach provides a solution only for the particular
problem of kMC simulation of dislocation motion. Yet, the

In many situations of interest, the evolution of a Markov problem of efficient kMC simulations of Markov processes
process is characterized by a series of rare transitions. In thntrolled by rare events is much more general. For instance,
case, the direct application of Monte Carlo simulation tech-standard displacement MC simulation of a system whose
niques becomes very inefficient, since the vast majority ofvolution is governed by activated processes suffers from the
the CPU cycles are spent on local moves, which, most of theame kind of problem. In this case, the local MC moves
time, do not contribute to the overall evolution of the systemsample mostly “unimportant” states near the deep energy
under consideration. basins of the potential-energy landscape, while the important

An illustrative example of this problem is the kinetic States near the energy barriers are visited only very occasion-
Monte Carlo(kMC) simulation of dislocation motion by the ally. Given their importance in general, it would be of con-
kink-pair mechanisni1-3]. In this approach, a perfect dis- siderable interest to develop a general approach to the effi-
location is modeled as a straight line positioned on a two<ient simulation of rare transition events in Markov
dimensional lattice, as shown in Fig(@l Under the influ- processes.
ence of an externally applied stress, the dislocation line lying In this paper we present a geneiaportance sampling
along the horizontal direction moves in the vertical direction[4] framework for this purpose. The foundation of the
by means of the creation of kink pairs, which are method is based on the fact that the low efficiency of direct
rectangular-shaped excitations that move a part of the disldMC simulations is a result of the extremely low probabilities
cation line to the next lattice position in the vertical direc- of generating sequences of statespaths that lead to suc-
tion, as shown in Fig. (b). In this manner, the dislocation cessful transition events. Within this context, the importance
motion occurs by the nucleation of embryonic kink pairs ofsampling approach seeks to modify the direct MC sampling
unit width, followed by their expansion along the dislocation algorithm in such a manner that the absolute probability of
line, as shown in Figs.(t)—1(e). A direct kKMC simulation of  the successful sequences is enhanced, while also preserving
this process would involve the generation of a stochasti¢heir relative probabilities. Furthermore, the importance sam-
sequence of the three elementary processes in the mod@ling method enhances the absolute probability of generating
nucleation of embryonic kink pairs, their expansion along thea successful path by knownamount, such that the evalua-
dislocation line, and possible kink annihilation events. Thetion of transition rates is straightforward. The scheme in-
efficiency of such a direct kMC approach, however, is ex-volves the design of a suitabieportance functiorthat con-
tremely low given that embryonic kink pairs are very un- trols the manner in which the sampling of local MC moves is
stable and have a large tendency to recombine among them-
selves. Only after a kink pair has reached a certain critical
width i., does it become stable against recombination and

able to contribute to the overall dislocation motion. Accord- (e) i=4
ingly, a direct kMC simulation will spend most of the CPU ] R
cycles on series of local moves that involve a nucleation (d) : — =3
event immediately followed by a recombination event, o K
whereas the important critical-width kink pairs are only () ! : =2
rarely sampled. I E

This particular problem has been solvied-3] by modi- (b) ; ‘ =1
fying the event catalog such that only the nucleation of o
critical-width kink pairs is considered, while the explicit evo- (a) ! : 1=0

lution of embryonic kink pairs leading to such critical-width
states is removed from consideration. While successful, this FIG. 1. Dislocation motion by kink-pair nucleation and growth.
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1.5 store the perfectly straight dislocation line, is dominant. Af-
ter reaching a certain critical width, in this case aroupd
=6, the kink pair becomes stable against annihilation and its
expansion under the influence of external stress becomes en-
ergetically favorable.
0.5 A direct KMC simulation of the process of embryonic
kink-pair formation and migration involves a series of one-
dimensional random walkers that initiate from the perfect
012345678910 dislocation configuration, state=0. The walkers continue

! until they either return to state=0, in which case the per-

fectly straight dislocation line is restored, or reach a certain

()

10° | width i =N, with N=i., in which case the kink pair has
" overcome the attractive forces. The transition probabilities

10 K(i—j) fori=1,---,N—1 are
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FIG. 2. (a) A typical energy landscape of kink-pair nucleation .
growth-recombination process under external stress represented Wth
a one-dimensional random walk. Random walks reaching kink-pair E(i—1)—E(i)
width N=10 are counted as successf(h) Survival probability r(i)Eexp{ — }

function pg(i) obtained by direct diagonalization of the transition 2kgT

matrix Kj; =K(i—j) (for j#0, Kjo=0). . E(i+1)—E(i)
I’Jr(I)EEXF{—T}, (2)

modified and determines by how much the absolute probabil- B

ity of generating a successful path is changed. We show thagfhq Kk (0—1)=1 for the initial state. Within this definition,
there exists an optimal importance function for which thisihe walker jumps either to the right or to the left at a given
probability becomes equal to unity and develop an iterativestep, but cannot remain in its current steé
algorithm for finding a numerical approximation to this func- A direct simulation based on these transition probabilities
tion. _ _ _ is extremely inefficient. This can be seen from Figb)2
The paper is organized as follows. In Sec. Il the impor-yhich shows the survival probabilitpy(i) that a walker
tance sampling framework is developed in the context of th€yhich initiates in a staté reaches the state=10 before
one-dimensional kink pair nucleation problem memio”edannihilating at a temperatule,T=0.069 (computed in Sec.
earlier. Section Il describes results obtained in further appliy, ). Sinceps(0)~10"°, on average, only one out of every
cations of the proposed methodology to relatively simple;® random walkers that start from the nucleation of an em-
one- and two-dimensional problems. Section IV concludeg,ryonic kink pair will lead to a relevant event of the forma-
the discussion. tion of a kink pair with a widthi = 10.
One solution to this problem is to change the event cata-
Il. METHODOLOGY log in such a manner that the nucleation of embryonic kink
pairs is removed from the description and is replaced by the
formation of kink pairs with a width=N. In order to guar-
antee that the statistical properties remain unaffected, one
Consider the kink-pair nucleation and growth problemdetermines the effective nucleation rate of such wider kink
from the preceding section. The configuration of a kink pairpairs, which can be done in a variety of waja. In the
is modeled in terms of its width measured in units of lattice present paper we adopt a different approach to the problem.
spacing along the dislocation line. Accordingly, the variousinstead of modifying the space of accessible states, that is,
states of a growing kink are enumeratedily0,1,2,3...,  removing narrow kink pairs from description, we develop a
wherei=0 corresponds to a perfectly straight dislocationmethodology that enhances the efficiency of the simulation
line with no kinks present,=1 corresponds to an embryonic by modifying the transition probabilities in Eq&l) and (2),
kink pair of unit width,i =2 is a kink pair of width 2, and so that is, we leave the system and its kinetics unchanged but
on (see Fig. 1 A typical energy landscapE(i) under the alter the Monte Carlo evolution. The purpose of this modifi-
influence of external stress is shown in Fige)2Throughout  cation is to bias the generation of random walks in such a
the paper energies are measured in arbitrary units. For naway that the absolute probability of sampling a successful
row kink pairs the attractive interaction, which tends to re-path(i.e. one that reachds=N) is increased, while keeping

A. Kink-pair nucleation and growth problem:
One-dimensional random walk
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the relative probability of different successful random walks 1(j)

unaltered. In addition, the modification of the transition K'(i—j)=K(i—])- 10 (for j#0),

probabilities is accomplished in a controlled manner, such

that the absolute probability is enhanced by a known amount K’'(i—0)=0, @)

and an effective nucleation rate of the kink pairs of width

=N can be readily computed. for i=0,... N—1. Since only the ratid (j)/I(i) is rel-

evant, we may fix the value of the importance function in

B. Importance sampling of the paths statei=N at an arbitrary constant. For convenience we set

I(N)=1. Using the modified transition probabilities, the

Let o, = (01,12, - . ..IL-1,@) be the sequence of states probability Eq.(4) for generating a successful pdily be-

visited along a random walk, grath, of lengthL that ini-

tiates in stateé =0 and ends in stater, with either «a=0 comes{4]

(failure) or a=N (succesk In the specific case of kink-pair P'(Ton) =K' (0—i)K'(i1—i5) - K'(i__1—N)
nucleation and growth, we are particularly interested in the

probability of generating a successful path since this prob- [(N)

ability determines the effective rate of kink-pair formation. :P(FON)I(O) P(Ton)/1(0), (€)

In addition, the distribution function for the lengthof the

successful paths is useful because it allows one to compuia which all fractions!(j)/I(i) from Eq. (8) have canceled
the time for a successful embryonic kink pair to reach theexcept forl (N)/1(0). Since the probability of generatiramny
critical width. Letf(L) be the statistical distribution of the successful path is modified by the same fadtdx)/I(0),
lengthL of all paths. Considering the two possible outcomesthe relative ratio of the probabilities of two successful paths

of a random-walk simulationf,(L) can be written as is not altered. The modified success probabilRy and
length distribution functiorf (L) become
F(L)=Pefo(L)+(1— Py fy(L), @ " (L)
I
whereP,=p,(0) is the probability of generating a success- E P'(Toy)= PSI(O) (10
ful path starting fromi =0, f4(L) is the length distribution Ton )"

function of successful paths, arfd(L) is that for failed and
paths. Since we are interested only in the first term on the
right-hand side of Eq(3), a direct sampling based on the 1
transition probabilitieg1) and (2) is hopelessly inefficient, fL(L)=— > P'(To.) 8 L =FsL). (11)
given that the success probabil®g~10°. . '
The probability of generating a patify,, starting in state _ ) )
i=0 and ending in state= « is given by the product of the ~ Equations(9)—(11) show that a simulation based on the
respective transition probabilitidé(i —j), modified transition probabilitieK’(i—j) allows one to
modify the absolute probability of sampling a successful
P(Ty,)=K(0—i)K(i;—i,)---K(i__;—a). (4  path by a factoi (N)/I(0), while leaving the relative prob-
abilities of different successful paths and the corresponding
The success probability and associated length distribution length distributionf;(L)=f¢(L) unaltered. In this way, by
fs(L) are then defined as selecting a suitable importance functilg), one can signifi-
cantly enhance the simulation efficiency.
P E P ©) The imple_n_wentation .o.f a random—yyalk simulation bgsed
e 0a) on the modified transition probabilitie8), however, is
somewhat more involved than that for the original system.
and The reason is related to the normalization of the transition
probabilities. While the original transition probabilities in
1 Eq. (1) are properly normalized at each site
fs(L)= P. FE P(oa) Siqry )L (6)

n(i)=2 K(i—j)=1, (12
where the summation is over all successful patpg of any !
length, L(T',) is the length of patH’y,, and &;, is the  the sums
Kronecker delta. The probabilities are normalized as follows:

. 1(j)
n'(i)= (i—]))= K(i— 13
2 PToa)+ 2 PToq)=1. W) D=3 K=D=g K- 09
Foo Fon

may no longer satisfy this condition. In order to handle such
Now, for each state let us define ammportance function non-normalized transition probabilities, we adopt a proce-

(i) and use it to modify the transition probabilitids(i dure in which we assign variablgatistical weights W to
—]) according to each path and allow for the possibility that a path is declared
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unsuccessful and terminated amy statei. In contrast, in a wherelL, is the length of pattk. Using Egs.(10) and (11),
simulation based on the original transition probabilities Eq.these results then give estimators for the success probability
(1) each path has unit weight and is allowed to terminateP in the original system
only when it is currently in state=1 or N—1.
An algorithm for simulating random walkers based on the —1(0)
modified transition probabilities in E@8) is as follows. P~ PQW, (16)
Function Random walk generation according to transi-
tion probabilitiesK’(i—]).
Input Modified transition probabilitie&’ (i—j). and the length distribution functiorfig(L)~f{(L).
Output Success measuse(s=0 if the path is a failure,
s=w’' if the path is successful, whem' is the statistical

) C. Optimizing the importance function
weight of the path

(1) Initialize i:=0, w’:=1. According to Eq.(10) the probabilityP; for sampling a

(2) Compute normalizatiom’ (i) ==K’ (i—j). succes_sfl_J! random_walk depends only_on the ret®) /I (N)_

(3) Update weightw’ :==w’'n’(i). of the initial and final values of the importance function.

(4) If w'=1 go to 6. Thereforeanyfunctionl (i) that satisfies the given boundary

(5) Draw a random numbefe U[0,1]. If £>w’ thens  conditions for this ratio gives theameexpectation values for
:=0 and exit. Otherwise reseat’ :=1. the success probabilit, and length distribution function

(6) Select the next statp according to the normalized fs(L). However, since the purpose of the simulation is the
transition probabilitieK’(i—j)/n’(i). Updatei:=j. estimation ofP, andf.(L), we must rely on their calcula-

(7) If i=0 thens:=0 and exit. Ifi=N thens:=w’ and tion by means of the averages, E¢&4) and(15). While the
exit. Otherwise go to 2. expectation values are determined only by the value

The algorithm initiates the random walk in state0 and  1(0)/I(N), thevariancesdepend on the functioh(i) at the
assigns unit weight to itw’=1. In the next step, the nor- intermediate points. In this sense there exist®ptimalim-
malization factom’(i) in Eq. (13) is computed for the cur- portance functiony,(i), for which these variances are mini-
rent state, after which the statistical weight for the pathis  mized.
updated by multiplying it by the current normalization factor.  The variances are closely related to the degree of normal-
Only when the current state is properly normalized, i.e. zation of the modified transition probabilitiés (i—j). Un-
n’(i)=1, will the weight of the path remain unaltered. Oth- less the transition probabilities are normalized at every state,
erwise, it will either decrease if’ (i) <1, or increase in case the sampling procedure will generate successful paths with
n’(i)>1. Based on the current value of the weig¥t, the  weights larger than or equal to unity and other paths that are
sampling for the next step may then proceed in two differenprematurely terminated. This will give rise to finite variances
ways. Ifw'=1, the sampling proceeds by selecting eitherin Egs.(14) and(15). For instance, the variance in the esti-
statei—1 or i+1 according to the normalized transition matorP/ is given by
probabilitiesK’ (i—i—1)/n'(i) andK'(i—i+1)/n’(i). In
casew’ <1, however, we allow for the possibility that the 2 1
walker is terminated at staiewith a probability 1—w’'. If -7
this occurs, the path is ended and declared unsuccessful. Oth- °
erwise, its weight is reset to unity and the selection of the
next state proceeds in the way described above. As output, =
the algorithm provides the success measwkthe path. Itis

equal to zero if the path is unsuccessful, wisitew’ in case ]
the walker reaches the state N. whereM ¢ and My are the numbers of successful and failed

Following this algorithm, the probabilitp’, of samplinga  random walks, respectively. Equa:cic(ﬁﬂ) shows that the
successful path and the corresponding length distributioftinimum variance is achieved #P;=1, M{=0 and the

f.(L) are estimated as averages over the success measul¥aights of all successful paths are equal to unity. In this
S(I‘Ea) along a series ofl random walkersl“ga, situation, both the first and the second terms on the right-

hand side of Eq(17) vanish ands(2/P.)=0.
M In this manner, the optimized importance functiqp(i)
Piz% kzl S(F'Sa) (14) :s:tge onel\:‘(irilvhich th&’(i—|) are normalized at all states

M
>, [s(T'§,)— P2
k=1

<

<

S

1 U
[w' (o) = PIP+ar 2 (PO? (A7)
k=1

e
d

1

and

L) _

> K'(i—))=2 K(i—j)—=r=1, (189
i j#0 Iopt(')
1 M
k
v 2, STEaL L with 1o (N)=1.
fo(L)= — , (15 In order to determind (i), it is useful to rewrite Eq.

Pq (18) in the form
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10
londi) = K(i— ) opd 19
opt(') jzo (i—=1}) opt(]): (19 10° |
, 107 /
for i=0,1,...N—=1 andl,(N)=1. It follows that the = 10712
functionl ,o(i) is the right eigenvector of the transition prob- = .
ability matrix K ;= K(i—j) (for j #0 andK;o=0) with unit 0
eigenvalue. The physical interpretation of this function be- 10" ne gy
comes clear after recognizing that the survival probability 10‘”’O T3 3 45 67 8 910
functionpg(i), defined as the probability that a random walk @) i
initiating in statei reaches statdl before annihilating in the
original system[see Sec. Il A and Fig. (B)], satisfies the 02 =
same recursive relation, ] fo
Ps(i)= 2 K(i=]) Py, (20 2. 01
where ps(0)= P and ps(N)=1. Accordingly, the value of
the optimal importance functioh,,(i) at statei is equal to 0
the survival probability functionpg(i) in the system de- b) o 1020 30 40 30

scribed by the original transition probabilities. . o
The success probability functign(i) can be obtained by FIG. 3. (a) Convergence of importance functio(i) towards the
direct diagonalization of the transition probability matrix optimal solutionps(i). The numbers in the figure give the number

Rij . This approach has been adopted in several earlier metﬁ’I iterations for eaCh.Cu'.Né(.o) Is always equal t6(1) and is not

. . . . . . plotted. (b) Length distributionf¢(L) of successful paths on the
ods for increasing simulation efficiendy,7]. Given that . ; . ing &
I .ni(i) is the eigenvector corresponding to the largest eigengne-dumensmna! random Walk py Importance sa_mplmg -
op - . } ] =~ cessfulpaths, using the optimal importance function from the exact
value ofKj; [8], the optimal importance sampling function sojution (barg and an importance function improved iteratively
can be obtained by repetitive multiplication by the transition(0).
probability matrix. Setting initial values!(i)=1 for all . o )
states and updating the importance function values accordiransition probabilities are updated. This iterative procedure
ing to the iterative scheme is repeated several times, until the success probalility

reaches a reasonable level, preferably close to unity, and the
importance function becomes sufficiently close to the opti-
Ik“(i)zz K(i—j)I%j) for i=01,...N—1, mal importance function for the relevant states in the prob-
1#0 lem. In terms of the theory of rare everj®], the relevant
‘ states may be interpreted as those most closely involved in
"(N)=1forall k, (21 the transition of interest.

) ) ) ) Having determined a suitable importance function using
progressively suppresses all eigenvectors with eigenvalugsther of the two procedures described above, one proceeds
smaller than unity, retaining only the desired eigenvectolhy measuring the relevant statistical estimators from a series
with eigenvalue 1. o of random-walk simulations based on the modified transition

While this scheme can be easily implemented for systemgrobabilities. Using Eqs(10) and (11), the results can then

characterized by a limited number of statesit will no e translated into the desired estimators for the properties of
longer be practical for high-dimensional systems involvingthe original system.

large numbers of degrees of freedom. In this case even the

mere storage of the importance functibfi) for all acces- ll. RESULTS
sible states may pose an enormous challenge. In this situa-
tion one should focus on finding an importance function that
is close to the optimal one for the “relevant” states in the As a first case study we apply the importance sampling
problem. This can be achieved by combining the iterativenethod to one-dimensional random walks on the energy pro-
procedureg(21) with a series of random walk simulations. In file of Fig. 2@ at a temperaturkgT=0.069. We define the
this approach, one starts with a series of simulations basesliccess state atN=10. Direct evaluation of the eigenvec-
on the original transition probabilities and records a list oftor of the transition probability matriX(i—j) with unit

the states that are visited during a sequenceMfrandom eigenvalue gives the exact optimal importance function
walks. Next, one updates the importance functi¢n) and  1,,(i), as shown by the filled circles in Fig(&. Given that
transition probabilities’ (i—]) [by Egs.(21) and(8)] only  I,n(i) is equal topg(i), the survival probability of walkers
for the states in this list, leaving all other values unaltered. initiating in statei =0 is of the order of only 10°, meaning
Using the updated transition probabilities, one carries outhat a direct simulation based on the original transition prob-
another series of random-walk simulations and records a newabilities will be ineffective. Notice thap,(0)=ps(1), since

list of visited states, for which the importance function andK(0—1)=1.

A. One-dimensional random walk

046703-5



CAl, KALOS, de KONING, AND BULATOV PHYSICAL REVIEW E 66, 046703 (2002

4 tance functior ,(i), as well as the original potential-energy
landscapeAE(i) approximately inverts the potential land-
3 scape near=0, transforming the attractive energy minimum
+AE in the original landscape into a repulsive maximum. While a
2 walker in the original system is likely to remain confined to
3 the energy basin of state=0, the walkers that belong to the
I E successful path ensemble rapidly escape to the destination
E statei=N as if they were repelled from the origin=0.
5 1 2 3 45 6 7 8 9 10 This observation suggests a simple approach to construct
i a suitable importance function. In principle, one could use a

bias function that inverts the original energy landscape. The
inversion results in a left-right reflection of the transition
probability, i.e., K'(i—i—1)=K(i—i+1) and K'(i—i
+1)=K(i—i—1). This transformation preserves the nor-
malization at each state and, for the one-dimensional

The open circles in Fig.(3) show the results of the itera- random-walk problem leads to a success probatfiflose

tive algorithm used to obtain an estimate for the optimaltC Unity. For problems in higher dimensions, however, this

importance function. The initial condition corresponds to theSIMPl€ inversion approach is generally not appropriate, since
case where the transition probabilities are not altered, i.4"€ optimal bias potential-energy will show approximate in-

11(i)=1 for all states. Using the corresponding transition Version of th(_a energy function onIy'anng certain dlrec_t|ons

probabilities, a series of 200 random-walk simulations is cari the potential energy landscape, i.e. those involved in the
ried out and a list of the visited stateis compiled. Next, the re_acnon coordmates_ of the _transmon event under consider-
importance function is updated only for the states in this list&tion (see the following section

and a new series of 200 random-walk simulations based on

FIG. 4. The bias potentiahE(i)= —2kgT Inpyi) (&) corre-
sponding to the optimal importance function. The original potential
energy E(i) (®) and the resulting modified potentiaE(i)
+AE(i) (A) are also shown.

the updated estimate for the importance function is con- B. Two-dimensional random walk
dUCte.d. Although afte.l’ the third iteration the impOI’t.ance As a Second application we use the importance samp“ng
function has been adjusted only for the states) andi  method to investigate the statistics of random walks on a

=1, the survival probability has already increased by a factwo-dimensional square lattice described by the energy func-
tor ~10P. Subsequent iterations further refine the importancajon

function, adjusting it on an increasing number of states. After

32 iterations, the importance function has essentially con-  V(X,y)=0.0%/+{4(1—x?—y?%)?+2(x*—2)?
verged and differences with the exact solution are no longer

visible on the scale of the figure. In addition, the length FLOxHy) 2= 1P [(x—y)*~ 117~ 2}/6
histogramf¢(L) of successful paths as measured from a se
ries of 1¢ random walks using the importance function ob-
tained after 32 iterations is essentially identical to the exac

defined on the domairx,ye[—1.5,1.5 and with lattice
spacingsAx=Ay=0.1. Figures &) and 3b) show three-
limensional and contour plot representations of the energy

one. This i_s shovyn in Fig.(B),_wh_ere the circles de_note the landscape on the specified domain, respectively. The energy
data compiled using the iterative importance function and th‘?unction has two energy minima at the positioNg: (x

bars represent the results based on the exact importanc:e_lll!y:o) andN,: (x=1.1y=0) with energiesv(No)

function. - ;
. . . =V(N,)=—-0.0812, respectively. The two energy basins are
o ey be usell o leret e ot mporiane Ut soparated by o sade poits 5 (x~0y-1) and
nal random-walk system. According to Eq4) and (2), the ?B: (x=0y=—1) with energiesV(S,)=1.02 andV(S;)
" o S : g =0.98.
transition probabilitiesK(i—]) are given in terms of the

energiesE(1) of the different kink-pair configurations In this problem, the transition probability matrix for a
Similarly, the modified transition probabilitid§’ (i—j) may given statei has four nonzero entries corresponding to the

. . o . states immediately below and above, and right and left of
be associated with a modified energy landsdapg), statei. We now consider the simulation of random walks

E'(i)=E(i)+AE(i), (22) initiating in stateNy and ending in statdl;. The exact opti-
mal importance functior ,p(i,j), determined by directly
where the bias potentiddE(i) is related to the importance computing the eigenvector with unit eigenvalue fosT

function | (i) according to =0.043, is shown in Fig. 6. A direct simulation will be in-
effective since the probability of generating a successful ran-
AE(i)=—2kgTInl(i). (23 dom walk starting inN using the original transition prob-

abilities is only~1012,
This association becomes exact when the modified transition Figure 7 shows the results of the importance function ob-
probability K’ (i—]) is normalized everywhere, i.e., when tained using the iterative procedure described in the previous
the importance function is optimal. two sections. The result shown in the figure was obtained
Figure 4 shows' (i) and AE(i) for the optimal impor-  after a series of 1000 iterations, each of which involved a
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E(x,y) log | 0I(x,y)

0.5
FIG. 5. (a) The energy landscapg(x,y) for two-dimensional GO : 500 1000
random walks. For illustrative purposes, energies higher than 2 are (®) iteration
g:giits? In the plot, but not in the actual calculatidy. Contour FIG. 7. (@) Importance function for the 2D random walk opti-

mized by the stochastic algorithm after 1000 iteratighg Conver-
gence of the success probabil to 1 with the number of itera-
series of 200 random walks generated using the current imions.

portance function modified after each iteration. Comparing

this result to the exact optimal importance function shown inences between the exact optimal importance function shown
Fig. 6, it is evident that there are significant differences beand the one obtained after 1000 iterations, the probability for
tween the two, in particular, near the edges of the domaingenerating a successful random walk becomes essentially
This is due to the fact that the iterative procedure updates thequal to unity after 500 iterations. This indicates that, al-
values of the importance function only for those states thathough quite different in irrelevant regions, the iterative ap-
are visited during the simulation. The regions near the edgesroximation is very close to the exact importance sampling
of the domain are only very rarely visited, even if one werefor those states that are effectively involved in the transitions
to use the exact optimal importance function for the sambetweenN, andNj.

pling, so that the convergence of the importance function for Using both the iterative functiofafter 1000 iterations
these states is relatively slow. Fortunately, however, the itand the exact solution, we now construct the length distribu-
erative procedure is required only to provide a good approxition function for the paths connectimdy andN;. Given that
mation to the optimal importance function for those stateshe energy landscape contains two distinct saddle-point re-
that are important for the transition under study. This is regions, we can identify two distinct transition mechanisms
flected in Fig. Th), which shows the success probabily ~ depending on whether the path passes through the saddle
as a function of iteration step. While there are clear differ-region arounds, or aroundSg . In this manner we may write
the total length distribution functiohy(L) as

log PL AL A(L)+PL oflo(L
lops f(L)= s,A s,A( )P, s, B s,B( ), (24)

2o %;
(ORI

, 7% where P¢ o (P ) is the probability that a successful path
-4 0&' 7 traverses through the region of saddle p@nt(Sg). Figure
"‘::::‘3:.’.0‘0‘0‘0”’ ) it 8 shows the two contributions on the right-hand side of Eq.
-8 \“"’0’00‘0‘0" 7 (24) as obtained from simulations of 4@uccessful paths.
\‘\’ Qf/- The full (dashedl curves show the contribution due to the
-12 f” paths passing near saddle poBy (Sg), as obtained using

the exact importance function. Since the energy of saddle
U 0 point S, is higher than that o8y, its contribution to the total
y -1 -1 length distribution function is smaller. The fillegempty
circles are the data obtained using the iterative approxima-
FIG. 6. Survival probability functiorpg(i), i.e., the optimal tion for the importance function. As expected, the agreement
importance function for the 2D random-walk system. between the two sets of data is excellent. In this example, the
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fg(L) shown in Fig. 9a). The path marked\ is representative of
0.12 i important sequences of states, connecting both minima
) o through saddle poing,. In contrast, pattB represents a
01 ¢4 relatively unimportant path, linking\, and N, through a
0.08 [ straight line in the configurational space. Figurdb)%nd
006 ¢ ° 9(c) show the modified and bias functioBs(i) andAE(i),
IR as well as the original energy landscape along the respective
0.04 paths. Along pathA, the bias function effectively “inverts”
0.02 the energy landscape in the neighborhood of minintgn

’ 20000 allowing random walkers on the modified landsc&géi) to

0 100 200 300 diffuse to stateN; without encountering any saddle points.
L Along pathB, however, the optimal bias function only shifts

FIG. 8. Length distributiorf4(L) of the successful paths for the the energy level of stathl, with respect to that oN,, but
two-dimensional random walk computed by importance samplingd0€s not remove the energy barrier. This indicates that the
of 10* successfulpaths. The contributions from paths crossing @pproximate inversion property observed for the one-
saddle regiorS, are plotted with the solid line and filled circles, dimensional(1D) random-walk problem holds only for di-
while those associated with pagh are plotted with the dashed line Tections in the potential-energy landscape involving a reac-
and open circles, using the optimdig. 6 and close to optimal tion coordinate of the transition of interest.

(Fig. 7) importance functions, respectively. ) ) ) ] )
C. Two-dimensional random walk using one-dimensional

. o . . importance function
computer time spent on optimizing the importance function

and on generating successful transition path samples is co
parable. In comparison, direct sampling without importanc
function would require 1% more computer time to generate
the same ensemble of successful paths, given its low succe

. The optimal importance functioh, is defined on the

omain of all states accessible to the system under consider-
ation. In the previous two applications the number of acces-

ible states is relatively small so that the successive trial
importance functions can be stored for all microscopic states.

prolgﬁg'lll'ty\?vse' consider the properties of the modified andThe resulting iterative procedure eventually converges to a
Y, prop near optimal solution. It is evident, however, that this task

blas_potentlal energy Iandscapes corresponding tq the OPYecomes increasingly difficult for high-dimensional systems
mal importance function. For this purpose we consider theit

behavior alona two distinct paths connectiNg andN.. as involving large numbers of degrees of freedom. In such cases
9 P 8 L one may no longer be able to record or adjust the value of a

trial importance function on all accessible states. In this situ-
ation one may proceed by using an importance function that,
instead of being tabulated for all accessible states, is defined
in terms of a reduced set of variables. Although such an
importance function will generally not converge to the exact
optimal solution, it still may significantly increase the suc-
cess probability while controlling the variance, provided the
reduced variable space is selected appropriately. In particu-
lar, an appropriate trial function would be defined on those
degrees of freedom that are actively involved in the transi-
tion of interest, i.e. the reaction coordinates. Unfortunately,
the reaction coordinates are usually not knaavpriori. For
these reasons, developing a robust solution that applies to
general high-dimensional systems still remains a great chal-
lenge. In this section, however, we demonstrate that the
above mentioned approach can be practical, i.e. one can in-
deed use a lower-dimensional importance function to boost
sampling efficiency of a higher-dimensional system.

As an illustration, let us modify the 2D random-walk
problem of the preceding section by redefining success as the
walker reaches states with energies higher than a preselected
valueE;. In this problem, we could use a trial importance
function defined in terms of the state eneigytself. Moti-
vated by the behavior of optimal importance functions in the
previous sections, we can use a trial importance function of
the form

()

FIG. 9. () PathsA andB across the energy landscayie). Op- 1(i)=exd — AE(i) (25
timal bias potentiahE along pathA (c) AE along pathB. 2kgT )’
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P’ energy landscape, witR,=8.772<10 °. The weighted av-
s . . . . .
10" : erage(with weight being the inverse of the standard devia-
0 I tion) of these estimates fd?, is P, =8.529< 10, in good
10 1 : agreement with the exact solution.
10
107 : IV. DISCUSSION
107 : The importance sampling approach discussed here shows
107 : interesting similarities with the transition path sampling
1 1.5 2 (TPS approach developed by Chandler and co-workers
(@) o [10,11). The TPS method samples an ensemble of successful
" P transition paths through a Metropolis algorithm in which a
1.5% 10 current successful trajectory is slightly distorted to generate a

new trial path. As in our importance sampling scheme, this
algorithm samples predominantly successful transition paths
1 while preserving the relative probabilities of different suc-
“ﬁ*”% cessful events, and has shown to be very useful for the study
of rare-event phenomena in complex systems. The major dif-
ference between the TPS scheme and the current importance
sampling method is that the latter is based on the use of an
0 explicit importance function. In this manner, one not only
(b) o preserves the relative distribution of successful transition
paths, but also retains quantitative information about the
FIG. 10. (a) The estimated success probabilitie for the ~ amount by which the sampling of successful transition paths
importance-sampled random walks with different choices.ofThe ~ has been enhanced. This information is not available in the
bias potential isa(E.—E). (b) The estimated success probability TPS approach, where one focuses mainly on the successful
Fszp_g (0) for the original system. The averages from 20 indepen-transition events but the ratio of relative probabilities of suc-
dent measures are plotted, each drawn frorh rididom walkers. cessful and unsuccessful paths is lost. As a consequence,
The dashed line shows exact solution (8.X2® %), which is the ~ TPS does not directly yield the absolute transition rates but
optimal importance function at staté,. The error bar shows the requires a significant additional effort to compute them using

estimated standard deviation, which is minimized dor 1.3. other methods, e.g., umbrella sampling. Given that this ratio
is always known in the present importance sampling frame-
AE(i)=a[E.—E(i)], (26)  work, it is free of this limitation and, in principle, allows a

direct estimation of absolute transition rates.
wherea is a adjustable parameter for optimization. A choice  Although it has shown to be very effective in the demon-
a~2 appears particularly appropriate considering Figs. 4trated one-dimensional and two-dimensional problems, the
and 9. Figure 1@) shows the measured success probabilityextension of the importance sampling scheme to more real-
of the importance sampled random waR§ ). The results istic problems involving large numbers of degrees of free-
for a range ofa are plotted, with critical energi,=0.9, dom remains a challenge. In the context of the present
which is slightly lower than the energy of both saddle points.method, the main hurdle is the determination of a suitable

Notice that for difference choices af, P.(«) changes over importanc.e_ function. In this sense, the probl_em of sampling
several orders of magnitudéhe single data point foP” () rare transition events has been transformed into a problem of
S

that is above 1.0 indicates that the average weights of thopt|m|zmg the importance function. This transformation ap-

successful paths in this case are more thah 08 the other bears promising, given that the optimization of the many-

; o i ody importance function shows striking similarities to
hand, the est|lmated success probabmty for the original _Sysduantum Monte Carlo method42], in which the Schid-
tem Pg(a)=P¢(a)-1(Np) remains nearly constant for this

' ‘ ; inger’s equation is solved by optimizing the trial many-body
range ofa [Fig. 10b)]. The horizontal dashed line represents,yave functions.

the exact success probability as determined from the optimal
importance function. Each data point and its associated stan-
dard deviationop; were obtained from 20 independent sets V. SUMMARY

of 10* random-walk simulations based on the respective im- \We have developed an importance sampling method for
portance function. The standard deviations of these estimatesfectively sampling rare transition events in Markov pro-
are plotted as error bars, showing a minimum around cesses. The approach is based on the use of an importance
~1.3. Even though forr=1.3 the success probabilif§; is  function that modifies the transition probabilities such that
only about 0.01, rather far from optimal, the importancethe probability of generating successful transition paths is
sampling procedure based on this bias energy function E@nhanced, while preserving the relative probabilities of dif-
(26) with «=1.3 still gives a very significant efficiency ferent successful events. In addition, the importance sam-
boost compared to a direct simulation based on the origingbling method enhances the absolute probability of generating
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a successful path by lenownamount, which facilitates the been successfully addressed in other areas of computational

evaluation of absolute transition rates. It is shown that arsciences, e.g., quantum Monte Carlo.

optimal importance functiom,, exists and can be approxi-

mated_ using an iterative _stoch_astlc algorithm. _Importance ACKNOWLEDGMENTS
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