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Importance sampling of rare transition events in Markov processes

Wei Cai, Malvin H. Kalos, Maurice de Koning, and Vasily V. Bulatov
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

~Received 9 May 2002; published 17 October 2002!

We present an importance sampling technique for enhancing the efficiency of sampling rare transition events
in Markov processes. Our approach is based on the design of an importance function by which the absolute
probability of sampling a successful transition event is significantly enhanced, while preserving the relative
probabilities among different successful transition paths. The method features an iterative stochastic algorithm
for determining the optimal importance function. Given that the probability of sampling a successful transition
event is enhanced by a known amount, transition rates can be readily computed. The method is illustrated in
one- and two-dimensional systems.
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I. INTRODUCTION

In many situations of interest, the evolution of a Mark
process is characterized by a series of rare transitions. In
case, the direct application of Monte Carlo simulation te
niques becomes very inefficient, since the vast majority
the CPU cycles are spent on local moves, which, most of
time, do not contribute to the overall evolution of the syste
under consideration.

An illustrative example of this problem is the kinet
Monte Carlo~kMC! simulation of dislocation motion by the
kink-pair mechanism@1–3#. In this approach, a perfect dis
location is modeled as a straight line positioned on a tw
dimensional lattice, as shown in Fig. 1~a!. Under the influ-
ence of an externally applied stress, the dislocation line ly
along the horizontal direction moves in the vertical directi
by means of the creation of kink pairs, which a
rectangular-shaped excitations that move a part of the d
cation line to the next lattice position in the vertical dire
tion, as shown in Fig. 1~b!. In this manner, the dislocatio
motion occurs by the nucleation of embryonic kink pairs
unit width, followed by their expansion along the dislocati
line, as shown in Figs. 1~c!–1~e!. A direct kMC simulation of
this process would involve the generation of a stocha
sequence of the three elementary processes in the m
nucleation of embryonic kink pairs, their expansion along
dislocation line, and possible kink annihilation events. T
efficiency of such a direct kMC approach, however, is e
tremely low given that embryonic kink pairs are very u
stable and have a large tendency to recombine among th
selves. Only after a kink pair has reached a certain crit
width i c , does it become stable against recombination
able to contribute to the overall dislocation motion. Accor
ingly, a direct kMC simulation will spend most of the CP
cycles on series of local moves that involve a nucleat
event immediately followed by a recombination eve
whereas the important critical-width kink pairs are on
rarely sampled.

This particular problem has been solved@1–3# by modi-
fying the event catalog such that only the nucleation
critical-width kink pairs is considered, while the explicit ev
lution of embryonic kink pairs leading to such critical-wid
states is removed from consideration. While successful,
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specific approach provides a solution only for the particu
problem of kMC simulation of dislocation motion. Yet, th
problem of efficient kMC simulations of Markov process
controlled by rare events is much more general. For insta
standard displacement MC simulation of a system wh
evolution is governed by activated processes suffers from
same kind of problem. In this case, the local MC mov
sample mostly ‘‘unimportant’’ states near the deep ene
basins of the potential-energy landscape, while the impor
states near the energy barriers are visited only very occas
ally. Given their importance in general, it would be of co
siderable interest to develop a general approach to the
cient simulation of rare transition events in Marko
processes.

In this paper we present a generalimportance sampling
@4# framework for this purpose. The foundation of th
method is based on the fact that the low efficiency of dir
MC simulations is a result of the extremely low probabiliti
of generating sequences of states, orpaths, that lead to suc-
cessful transition events. Within this context, the importan
sampling approach seeks to modify the direct MC sampl
algorithm in such a manner that the absolute probability
the successful sequences is enhanced, while also prese
their relative probabilities. Furthermore, the importance sa
pling method enhances the absolute probability of genera
a successful path by aknownamount, such that the evalua
tion of transition rates is straightforward. The scheme
volves the design of a suitableimportance functionthat con-
trols the manner in which the sampling of local MC moves

FIG. 1. Dislocation motion by kink-pair nucleation and growt
©2002 The American Physical Society03-1
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modified and determines by how much the absolute proba
ity of generating a successful path is changed. We show
there exists an optimal importance function for which th
probability becomes equal to unity and develop an itera
algorithm for finding a numerical approximation to this fun
tion.

The paper is organized as follows. In Sec. II the imp
tance sampling framework is developed in the context of
one-dimensional kink pair nucleation problem mention
earlier. Section III describes results obtained in further ap
cations of the proposed methodology to relatively sim
one- and two-dimensional problems. Section IV conclud
the discussion.

II. METHODOLOGY

A. Kink-pair nucleation and growth problem:
One-dimensional random walk

Consider the kink-pair nucleation and growth proble
from the preceding section. The configuration of a kink p
is modeled in terms of its widthi, measured in units of lattice
spacing along the dislocation line. Accordingly, the vario
states of a growing kink are enumerated byi 50,1,2,3, . . . ,
where i 50 corresponds to a perfectly straight dislocati
line with no kinks present,i 51 corresponds to an embryon
kink pair of unit width,i 52 is a kink pair of width 2, and so
on ~see Fig. 1!. A typical energy landscapeE( i ) under the
influence of external stress is shown in Fig. 2~a!. Throughout
the paper energies are measured in arbitrary units. For
row kink pairs the attractive interaction, which tends to

FIG. 2. ~a! A typical energy landscape of kink-pair nucleatio
growth-recombination process under external stress represente
a one-dimensional random walk. Random walks reaching kink-
width N510 are counted as successful.~b! Survival probability
function ps( i ) obtained by direct diagonalization of the transitio

matrix K̃ i j 5K( i→ j ) ~for j Þ0, K̃ i050).
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store the perfectly straight dislocation line, is dominant. A
ter reaching a certain critical width, in this case aroundi c
56, the kink pair becomes stable against annihilation and
expansion under the influence of external stress become
ergetically favorable.

A direct kMC simulation of the process of embryon
kink-pair formation and migration involves a series of on
dimensional random walkers that initiate from the perfe
dislocation configuration, statei 50. The walkers continue
until they either return to statei 50, in which case the per
fectly straight dislocation line is restored, or reach a cert
width i 5N, with N> i c , in which case the kink pair ha
overcome the attractive forces. The transition probabilit
K( i→ j ) for i 51,•••,N21 are

K~ i→ i 21!5
r 2~ i !

r 2~ i !1r 1~ i !
,

K~ i→ i 11!5
r 1~ i !

r 2~ i !1r 1~ i !
,

K~ i→ j !50, j Þ i 11,i 21, ~1!

with

r 2~ i ![expF2
E~ i 21!2E~ i !

2kBT G ,
r 1~ i ![expF2

E~ i 11!2E~ i !

2kBT G , ~2!

andK(0→1)51 for the initial state. Within this definition
the walker jumps either to the right or to the left at a giv
step, but cannot remain in its current state@5#.

A direct simulation based on these transition probabilit
is extremely inefficient. This can be seen from Fig. 2~b!,
which shows the survival probabilityps( i ) that a walker
which initiates in a statei reaches the statei 510 before
annihilating at a temperaturekBT50.069~computed in Sec.
III !. Sinceps(0);1029, on average, only one out of ever
109 random walkers that start from the nucleation of an e
bryonic kink pair will lead to a relevant event of the form
tion of a kink pair with a widthi 510.

One solution to this problem is to change the event ca
log in such a manner that the nucleation of embryonic k
pairs is removed from the description and is replaced by
formation of kink pairs with a widthi 5N. In order to guar-
antee that the statistical properties remain unaffected,
determines the effective nucleation rate of such wider k
pairs, which can be done in a variety of ways@3#. In the
present paper we adopt a different approach to the prob
Instead of modifying the space of accessible states, tha
removing narrow kink pairs from description, we develop
methodology that enhances the efficiency of the simulat
by modifying the transition probabilities in Eqs.~1! and~2!,
that is, we leave the system and its kinetics unchanged
alter the Monte Carlo evolution. The purpose of this mod
cation is to bias the generation of random walks in suc
way that the absolute probability of sampling a success
path~i.e. one that reachesi 5N) is increased, while keeping

by
ir
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IMPORTANCE SAMPLING OF RARE TRANSITION . . . PHYSICAL REVIEW E66, 046703 ~2002!
the relative probability of different successful random wa
unaltered. In addition, the modification of the transiti
probabilities is accomplished in a controlled manner, su
that the absolute probability is enhanced by a known amo
and an effective nucleation rate of the kink pairs of widthi
5N can be readily computed.

B. Importance sampling of the paths

Let G0a5(0,i 1 ,i 2 , . . . ,i L21 ,a) be the sequence of state
visited along a random walk, orpath, of length L that ini-
tiates in statei 50 and ends in statea, with either a50
~failure! or a5N ~success!. In the specific case of kink-pai
nucleation and growth, we are particularly interested in
probability of generating a successful path since this pr
ability determines the effective rate of kink-pair formatio
In addition, the distribution function for the lengthL of the
successful paths is useful because it allows one to com
the time for a successful embryonic kink pair to reach
critical width. Let f (L) be the statistical distribution of th
lengthL of all paths. Considering the two possible outcom
of a random-walk simulation,f (L) can be written as

f ~L !5Psf s~L !1~12Ps! f f~L !, ~3!

wherePs[ps(0) is the probability of generating a succes
ful path starting fromi 50, f s(L) is the length distribution
function of successful paths, andf f(L) is that for failed
paths. Since we are interested only in the first term on
right-hand side of Eq.~3!, a direct sampling based on th
transition probabilities~1! and ~2! is hopelessly inefficient,
given that the success probabilityPs;1029.

The probability of generating a pathG0a starting in state
i 50 and ending in statei 5a is given by the product of the
respective transition probabilitiesK( i→ j ),

P~G0a!5K~0→ i 1!K~ i 1→ i 2!•••K~ i L21→a!. ~4!

The success probabilityPs and associated length distributio
f s(L) are then defined as

Ps5(
G0N

P~G0a! ~5!

and

f s~L !5
1

Ps
(
G0N

P~G0a!d L̂(G0a),L , ~6!

where the summation is over all successful pathsG0N of any
length, L̂(G0a) is the length of pathG0a , and d L̂,L is the
Kronecker delta. The probabilities are normalized as follow

(
G00

P~G0a!1(
G0N

P~G0a!51. ~7!

Now, for each statei let us define animportance function
I ( i ) and use it to modify the transition probabilitiesK( i
→ j ) according to
04670
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K8~ i→ j !5K~ i→ j !•
I ~ j !

I ~ i !
~ for j Þ0!,

K8~ i→0!50, ~8!

for i 50, . . . ,N21. Since only the ratioI ( j )/I ( i ) is rel-
evant, we may fix the value of the importance function
statei 5N at an arbitrary constant. For convenience we
I (N)51. Using the modified transition probabilities, th
probability Eq.~4! for generating a successful pathG0N be-
comes@4#

P8~G0N!5K8~0→ i 1!K8~ i 1→ i 2!•••K8~ i L21→N!

5P~G0N!
I ~N!

I ~0!
5P~G0N!/I ~0!, ~9!

in which all fractionsI ( j )/I ( i ) from Eq. ~8! have canceled
except forI (N)/I (0). Since the probability of generatingany
successful path is modified by the same factorI (N)/I (0),
the relative ratio of the probabilities of two successful pa
is not altered. The modified success probabilityPs8 and
length distribution functionf s8(L) become

Ps85(
G0N

P8~G0a!5Ps

I ~N!

I ~0!
, ~10!

and

f s8~L !5
1

Ps8
(
G0N

P8~G0a!d L̂,L5 f s~L !. ~11!

Equations~9!–~11! show that a simulation based on th
modified transition probabilitiesK8( i→ j ) allows one to
modify the absolute probability of sampling a success
path by a factorI (N)/I (0), while leaving the relative prob-
abilities of different successful paths and the correspond
length distributionf s8(L)5 f s(L) unaltered. In this way, by
selecting a suitable importance functionI ( i ), one can signifi-
cantly enhance the simulation efficiency.

The implementation of a random-walk simulation bas
on the modified transition probabilities~8!, however, is
somewhat more involved than that for the original syste
The reason is related to the normalization of the transit
probabilities. While the original transition probabilities i
Eq. ~1! are properly normalized at each sitei,

n~ i !5(
j

K~ i→ j !51, ~12!

the sums

n8~ i !5(
j

K8~ i→ j !5(
j Þ0

K~ i→ j !
I ~ j !

I ~ i !
~13!

may no longer satisfy this condition. In order to handle su
non-normalized transition probabilities, we adopt a pro
dure in which we assign variablestatistical weights w8 to
each path and allow for the possibility that a path is decla
3-3
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CAI, KALOS, de KONING, AND BULATOV PHYSICAL REVIEW E66, 046703 ~2002!
unsuccessful and terminated inany statei. In contrast, in a
simulation based on the original transition probabilities E
~1! each path has unit weight and is allowed to termin
only when it is currently in statei 51 or N21.

An algorithm for simulating random walkers based on t
modified transition probabilities in Eq.~8! is as follows.

Function. Random walk generation according to tran
tion probabilitiesK8( i→ j ).

Input. Modified transition probabilitiesK8( i→ j ).
Output. Success measures (s50 if the path is a failure,

s5w8 if the path is successful, wherew8 is the statistical
weight of the path!.

~1! Initialize iª0, w8ª1.
~2! Compute normalization,n8( i )5( jK8( i→ j ).
~3! Update weight,w8ªw8n8( i ).
~4! If w8>1 go to 6.
~5! Draw a random numberjPU@0,1#. If j.w8 then s

ª0 and exit. Otherwise resetw8ª1.
~6! Select the next statej according to the normalized

transition probabilitiesK8( i→ j )/n8( i ). Updateiª j .
~7! If i 50 thensª0 and exit. If i 5N then sªw8 and

exit. Otherwise go to 2.
The algorithm initiates the random walk in statei 50 and

assigns unit weight to it,w851. In the next step, the nor
malization factorn8( i ) in Eq. ~13! is computed for the cur-
rent state, after which the statistical weightw8 for the path is
updated by multiplying it by the current normalization facto
Only when the current state is properly normalized, i
n8( i )51, will the weight of the path remain unaltered. Ot
erwise, it will either decrease ifn8( i ),1, or increase in case
n8( i ).1. Based on the current value of the weightw8, the
sampling for the next step may then proceed in two differ
ways. If w8>1, the sampling proceeds by selecting eith
state i 21 or i 11 according to the normalized transitio
probabilitiesK8( i→ i 21)/n8( i ) andK8( i→ i 11)/n8( i ). In
casew8,1, however, we allow for the possibility that th
walker is terminated at statei with a probability 12w8. If
this occurs, the path is ended and declared unsuccessful.
erwise, its weight is reset to unity and the selection of
next state proceeds in the way described above. As ou
the algorithm provides the success measures of the path. It is
equal to zero if the path is unsuccessful, whiles5w8 in case
the walker reaches the statei 5N.

Following this algorithm, the probabilityPs8 of sampling a
successful path and the corresponding length distribu
f s8(L) are estimated as averages over the success mea
s(G0a

k ) along a series ofM random walkersG0a
k ,

Ps85
1

M (
k51

M

s~G0a
k ! ~14!

and

f s8~L !5

1

M (
k51

M

s~G0N
(k)!dLk ,L

Ps8
, ~15!
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whereLk is the length of pathk. Using Eqs.~10! and ~11!,
these results then give estimators for the success probab
Ps in the original system

Ps'Ps8
I ~0!

I ~N!
, ~16!

and the length distribution function,f s(L)' f s8(L).

C. Optimizing the importance function

According to Eq.~10! the probabilityPs8 for sampling a
successful random walk depends only on the ratioI (0)/I (N)
of the initial and final values of the importance functio
Therefore,any function I ( i ) that satisfies the given boundar
conditions for this ratio gives thesameexpectation values for
the success probabilityPs8 and length distribution function
f s8(L). However, since the purpose of the simulation is t
estimation ofPs8 and f s8(L), we must rely on their calcula
tion by means of the averages, Eqs.~14! and~15!. While the
expectation values are determined only by the va
I (0)/I (N), thevariancesdepend on the functionI ( i ) at the
intermediate points. In this sense there exists anoptimal im-
portance functionI opt( i ), for which these variances are min
mized.

The variances are closely related to the degree of norm
ization of the modified transition probabilitiesK8( i→ j ). Un-
less the transition probabilities are normalized at every st
the sampling procedure will generate successful paths w
weights larger than or equal to unity and other paths that
prematurely terminated. This will give rise to finite varianc
in Eqs.~14! and ~15!. For instance, the variance in the es
matorPs8 is given by

s
2

Ps8
5

1

M (
k51

M

@s~G0a
k !2Ps8#2

5
1

M (
k51

Ms

@w8~G0N
k !2Ps8#21

1

M (
k51

M f

~Ps8!2, ~17!

whereMs and M f are the numbers of successful and fail
random walks, respectively. Equation~17! shows that the
minimum variance is achieved ifPs851, M f50 and the
weights of all successful paths are equal to unity. In t
situation, both the first and the second terms on the rig
hand side of Eq.~17! vanish ands(2/Ps8)50.

In this manner, the optimized importance functionI opt( i )
is the one for which theK8( i→ j ) are normalized at all state
i 50, . . . ,N21,

(
j

K8~ i→ j !5(
j Þ0

K~ i→ j !
I opt~ j !

I opt~ i !
51, ~18!

with I opt(N)51.
In order to determineI opt( i ), it is useful to rewrite Eq.

~18! in the form
3-4
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IMPORTANCE SAMPLING OF RARE TRANSITION . . . PHYSICAL REVIEW E66, 046703 ~2002!
I opt~ i !5(
j Þ0

K~ i→ j !I opt~ j !, ~19!

for i 50,1, . . . ,N21 and I opt(N)51. It follows that the
function I opt( i ) is the right eigenvector of the transition pro
ability matrix K̃ i j 5K( i→ j ) ~for j Þ0 andK̃ i050) with unit
eigenvalue. The physical interpretation of this function b
comes clear after recognizing that the survival probabi
functionps( i ), defined as the probability that a random wa
initiating in statei reaches stateN before annihilating in the
original system@see Sec. II A and Fig. 2~b!#, satisfies the
same recursive relation,

ps~ i !5(
j Þ0

K~ i→ j ! ps~ j !, ~20!

whereps(0)5Ps and ps(N)51. Accordingly, the value of
the optimal importance functionI opt( i ) at statei is equal to
the survival probability functionps( i ) in the system de-
scribed by the original transition probabilities.

The success probability functionps( i ) can be obtained by
direct diagonalization of the transition probability matr
K̃ i j . This approach has been adopted in several earlier m
ods for increasing simulation efficiency@6,7#. Given that
I opt( i ) is the eigenvector corresponding to the largest eig
value of K̃ i j @8#, the optimal importance sampling functio
can be obtained by repetitive multiplication by the transiti
probability matrix. Setting initial valuesI 1( i )51 for all
statesi and updating the importance function values acco
ing to the iterative scheme

I k11~ i !5(
j Þ0

K~ i→ j !I k~ j ! for i 50,1, . . . ,N21,

I k~N!51 for all k, ~21!

progressively suppresses all eigenvectors with eigenva
smaller than unity, retaining only the desired eigenvec
with eigenvalue 1.

While this scheme can be easily implemented for syste
characterized by a limited number of statesi, it will no
longer be practical for high-dimensional systems involvi
large numbers of degrees of freedom. In this case even
mere storage of the importance functionI ( i ) for all acces-
sible statesi may pose an enormous challenge. In this sit
tion one should focus on finding an importance function t
is close to the optimal one for the ‘‘relevant’’ states in t
problem. This can be achieved by combining the iterat
procedure~21! with a series of random walk simulations. I
this approach, one starts with a series of simulations ba
on the original transition probabilities and records a list
the statesi that are visited during a sequence ofM random
walks. Next, one updates the importance functionI ( i ) and
transition probabilitiesK8( i→ j ) @by Eqs.~21! and~8!# only
for the statesi in this list, leaving all other values unaltere
Using the updated transition probabilities, one carries
another series of random-walk simulations and records a
list of visited states, for which the importance function a
04670
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transition probabilities are updated. This iterative proced
is repeated several times, until the success probabilityPs8
reaches a reasonable level, preferably close to unity, and
importance function becomes sufficiently close to the op
mal importance function for the relevant states in the pr
lem. In terms of the theory of rare events@9#, the relevant
states may be interpreted as those most closely involve
the transition of interest.

Having determined a suitable importance function us
either of the two procedures described above, one proce
by measuring the relevant statistical estimators from a se
of random-walk simulations based on the modified transit
probabilities. Using Eqs.~10! and ~11!, the results can then
be translated into the desired estimators for the propertie
the original system.

III. RESULTS

A. One-dimensional random walk

As a first case study we apply the importance sampl
method to one-dimensional random walks on the energy p
file of Fig. 2~a! at a temperaturekBT50.069. We define the
success state ati 5N510. Direct evaluation of the eigenvec
tor of the transition probability matrixK( i→ j ) with unit
eigenvalue gives the exact optimal importance funct
I opt( i ), as shown by the filled circles in Fig. 3~a!. Given that
I opt( i ) is equal tops( i ), the survival probability of walkers
initiating in statei 50 is of the order of only 1029, meaning
that a direct simulation based on the original transition pr
abilities will be ineffective. Notice thatps(0)5ps(1), since
K(0→1)51.

FIG. 3. ~a! Convergence of importance functionI ( i ) towards the
optimal solutionps( i ). The numbers in the figure give the numb
of iterations for each curve.I (0) is always equal toI (1) and is not
plotted. ~b! Length distributionf s(L) of successful paths on th
one-dimensional random walk by importance sampling of 105 suc-
cessfulpaths, using the optimal importance function from the ex
solution ~bars! and an importance function improved iterative
(s).
3-5
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The open circles in Fig. 3~a! show the results of the itera
tive algorithm used to obtain an estimate for the optim
importance function. The initial condition corresponds to t
case where the transition probabilities are not altered,
I 1( i )51 for all statesi. Using the corresponding transitio
probabilities, a series of 200 random-walk simulations is c
ried out and a list of the visited statesi is compiled. Next, the
importance function is updated only for the states in this l
and a new series of 200 random-walk simulations based
the updated estimate for the importance function is c
ducted. Although after the third iteration the importan
function has been adjusted only for the statesi 50 and i
51, the survival probability has already increased by a f
tor ;106. Subsequent iterations further refine the importan
function, adjusting it on an increasing number of states. A
32 iterations, the importance function has essentially c
verged and differences with the exact solution are no lon
visible on the scale of the figure. In addition, the leng
histogramf s(L) of successful paths as measured from a
ries of 105 random walks using the importance function o
tained after 32 iterations is essentially identical to the ex
one. This is shown in Fig. 3~b!, where the circles denote th
data compiled using the iterative importance function and
bars represent the results based on the exact import
function.

It may be useful to interpret the optimal importance fun
tion in terms of associated effective energy bias on the or
nal random-walk system. According to Eqs.~1! and ~2!, the
transition probabilitiesK( i→ j ) are given in terms of the
energiesE( i ) of the different kink-pair configurationsi.
Similarly, the modified transition probabilitiesK8( i→ j ) may
be associated with a modified energy landscapeE8( i ),

E8~ i !5E~ i !1DE~ i !, ~22!

where the bias potentialDE( i ) is related to the importanc
function I ( i ) according to

DE~ i !522kBT ln I ~ i !. ~23!

This association becomes exact when the modified trans
probability K8( i→ j ) is normalized everywhere, i.e., whe
the importance function is optimal.

Figure 4 showsE8( i ) and DE( i ) for the optimal impor-

FIG. 4. The bias potentialDE( i )522kBT ln ps(i) (L) corre-
sponding to the optimal importance function. The original poten
energy E( i ) (d) and the resulting modified potentialE( i )
1DE( i ) (D) are also shown.
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tance functionI opt( i ), as well as the original potential-energ
landscape.DE( i ) approximately inverts the potential land
scape neari 50, transforming the attractive energy minimu
in the original landscape into a repulsive maximum. While
walker in the original system is likely to remain confined
the energy basin of statei 50, the walkers that belong to th
successful path ensemble rapidly escape to the destina
statei 5N as if they were repelled from the origini 50.

This observation suggests a simple approach to cons
a suitable importance function. In principle, one could us
bias function that inverts the original energy landscape. T
inversion results in a left-right reflection of the transitio
probability, i.e., K8( i→ i 21)5K( i→ i 11) and K8( i→ i
11)5K( i→ i 21). This transformation preserves the no
malization at each state and, for the one-dimensio
random-walk problem leads to a success probabilityPs8 close
to unity. For problems in higher dimensions, however, t
simple inversion approach is generally not appropriate, si
the optimal bias potential-energy will show approximate
version of the energy function only along certain directio
in the potential energy landscape, i.e. those involved in
reaction coordinates of the transition event under consid
ation ~see the following section!.

B. Two-dimensional random walk

As a second application we use the importance samp
method to investigate the statistics of random walks on
two-dimensional square lattice described by the energy fu
tion

V~x,y!50.02y1$4~12x22y2!212~x222!2

1@~x1y!221#21@~x2y!221#222%/6

defined on the domainx,yP@21.5,1.5# and with lattice
spacingsDx5Dy50.1. Figures 5~a! and 5~b! show three-
dimensional and contour plot representations of the ene
landscape on the specified domain, respectively. The en
function has two energy minima at the positionsN0 : (x
521.1,y50) andN1 : (x51.1,y50) with energiesV(N0)
5V(N1)520.0812, respectively. The two energy basins a
separated by two saddle points atSA : (x50,y51) and
SB : (x50,y521) with energiesV(SA)51.02 andV(SB)
50.98.

In this problem, the transition probability matrix for
given statei has four nonzero entries corresponding to t
states immediately below and above, and right and left
state i. We now consider the simulation of random wal
initiating in stateN0 and ending in stateN1. The exact opti-
mal importance functionI opt( i , j ), determined by directly
computing the eigenvector with unit eigenvalue forkBT
50.043, is shown in Fig. 6. A direct simulation will be in
effective since the probability of generating a successful r
dom walk starting inN0 using the original transition prob
abilities is only;10212.

Figure 7 shows the results of the importance function
tained using the iterative procedure described in the prev
two sections. The result shown in the figure was obtain
after a series of 1000 iterations, each of which involved

l
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IMPORTANCE SAMPLING OF RARE TRANSITION . . . PHYSICAL REVIEW E66, 046703 ~2002!
series of 200 random walks generated using the current
portance function modified after each iteration. Compar
this result to the exact optimal importance function shown
Fig. 6, it is evident that there are significant differences
tween the two, in particular, near the edges of the dom
This is due to the fact that the iterative procedure updates
values of the importance function only for those states t
are visited during the simulation. The regions near the ed
of the domain are only very rarely visited, even if one we
to use the exact optimal importance function for the sa
pling, so that the convergence of the importance function
these states is relatively slow. Fortunately, however, the
erative procedure is required only to provide a good appro
mation to the optimal importance function for those sta
that are important for the transition under study. This is
flected in Fig. 7~b!, which shows the success probabilityPs8
as a function of iteration step. While there are clear diff

FIG. 5. ~a! The energy landscapeE(x,y) for two-dimensional
random walks. For illustrative purposes, energies higher than 2
truncated in the plot, but not in the actual calculation.~b! Contour
of E(x,y).

FIG. 6. Survival probability functionps( i ), i.e., the optimal
importance function for the 2D random-walk system.
04670
-
g
n
-

n.
he
t

es

-
r
t-
i-
s
-

-

ences between the exact optimal importance function sh
and the one obtained after 1000 iterations, the probability
generating a successful random walk becomes essen
equal to unity after 500 iterations. This indicates that,
though quite different in irrelevant regions, the iterative a
proximation is very close to the exact importance sampl
for those states that are effectively involved in the transitio
betweenN0 andN1.

Using both the iterative function~after 1000 iterations!
and the exact solution, we now construct the length distri
tion function for the paths connectingN0 andN1. Given that
the energy landscape contains two distinct saddle-point
gions, we can identify two distinct transition mechanism
depending on whether the path passes through the sa
region aroundSA or aroundSB . In this manner we may write
the total length distribution functionf s(L) as

f s~L !5
Ps,A8 f s,A8 ~L !1Ps, B8 f s,B8 ~L !

Ps8
, ~24!

where Ps,A8 (Ps,B8 ) is the probability that a successful pa
traverses through the region of saddle pointSA (SB). Figure
8 shows the two contributions on the right-hand side of E
~24! as obtained from simulations of 104 successful paths
The full ~dashed! curves show the contribution due to th
paths passing near saddle pointSA (SB), as obtained using
the exact importance function. Since the energy of sad
point SA is higher than that ofSB , its contribution to the total
length distribution function is smaller. The filled~empty!
circles are the data obtained using the iterative approxi
tion for the importance function. As expected, the agreem
between the two sets of data is excellent. In this example,

re

FIG. 7. ~a! Importance function for the 2D random walk opt
mized by the stochastic algorithm after 1000 iterations.~b! Conver-
gence of the success probabilityPs8 to 1 with the number of itera-
tions.
3-7
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CAI, KALOS, de KONING, AND BULATOV PHYSICAL REVIEW E66, 046703 ~2002!
computer time spent on optimizing the importance funct
and on generating successful transition path samples is c
parable. In comparison, direct sampling without importan
function would require 1012 more computer time to genera
the same ensemble of successful paths, given its low suc
probability Ps .

Finally, we consider the properties of the modified a
bias potential energy landscapes corresponding to the
mal importance function. For this purpose we consider th
behavior along two distinct paths connectingN0 andN1, as

FIG. 8. Length distributionf s(L) of the successful paths for th
two-dimensional random walk computed by importance samp
of 104 successfulpaths. The contributions from paths crossi
saddle regionSA are plotted with the solid line and filled circles
while those associated with pathSB are plotted with the dashed lin
and open circles, using the optimal~Fig. 6! and close to optimal
~Fig. 7! importance functions, respectively.

FIG. 9. ~a! PathsA andB across the energy landscape.~b! Op-
timal bias potentialDE along pathA ~c! DE along pathB.
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shown in Fig. 9~a!. The path markedA is representative of
important sequences of states, connecting both min
through saddle pointSA . In contrast, pathB represents a
relatively unimportant path, linkingN0 and N1 through a
straight line in the configurational space. Figures 9~b! and
9~c! show the modified and bias functionsE8( i ) andDE( i ),
as well as the original energy landscape along the respec
paths. Along pathA, the bias function effectively ‘‘inverts’’
the energy landscape in the neighborhood of minimumN0,
allowing random walkers on the modified landscapeE8( i ) to
diffuse to stateN1 without encountering any saddle point
Along pathB, however, the optimal bias function only shif
the energy level of stateN0 with respect to that ofN1, but
does not remove the energy barrier. This indicates that
approximate inversion property observed for the on
dimensional~1D! random-walk problem holds only for di
rections in the potential-energy landscape involving a re
tion coordinate of the transition of interest.

C. Two-dimensional random walk using one-dimensional
importance function

The optimal importance functionI opt is defined on the
domain of all states accessible to the system under cons
ation. In the previous two applications the number of acc
sible states is relatively small so that the successive
importance functions can be stored for all microscopic sta
The resulting iterative procedure eventually converges t
near optimal solution. It is evident, however, that this ta
becomes increasingly difficult for high-dimensional syste
involving large numbers of degrees of freedom. In such ca
one may no longer be able to record or adjust the value
trial importance function on all accessible states. In this s
ation one may proceed by using an importance function t
instead of being tabulated for all accessible states, is defi
in terms of a reduced set of variables. Although such
importance function will generally not converge to the exa
optimal solution, it still may significantly increase the su
cess probability while controlling the variance, provided t
reduced variable space is selected appropriately. In part
lar, an appropriate trial function would be defined on tho
degrees of freedom that are actively involved in the tran
tion of interest, i.e. the reaction coordinates. Unfortunate
the reaction coordinates are usually not knowna priori. For
these reasons, developing a robust solution that applie
general high-dimensional systems still remains a great c
lenge. In this section, however, we demonstrate that
above mentioned approach can be practical, i.e. one can
deed use a lower-dimensional importance function to bo
sampling efficiency of a higher-dimensional system.

As an illustration, let us modify the 2D random-wa
problem of the preceding section by redefining success as
walker reaches states with energies higher than a presele
value Ec . In this problem, we could use a trial importanc
function defined in terms of the state energyE itself. Moti-
vated by the behavior of optimal importance functions in t
previous sections, we can use a trial importance function
the form

I ~ i !5expS 2
DE~ i !

2kBT D , ~25!

g
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IMPORTANCE SAMPLING OF RARE TRANSITION . . . PHYSICAL REVIEW E66, 046703 ~2002!
DE~ i !5a@Ec2E~ i !#, ~26!

wherea is a adjustable parameter for optimization. A choi
a'2 appears particularly appropriate considering Figs
and 9. Figure 10~a! shows the measured success probabi
of the importance sampled random walksPs8(a). The results
for a range ofa are plotted, with critical energyEc50.9,
which is slightly lower than the energy of both saddle poin
Notice that for difference choices ofa, Ps8(a) changes over
several orders of magnitude@the single data point forPs8(a)
that is above 1.0 indicates that the average weights of
successful paths in this case are more than 1.0#. On the other
hand, the estimated success probability for the original s
tem Ps(a)5Ps8(a)•I (N0) remains nearly constant for thi
range ofa @Fig. 10~b!#. The horizontal dashed line represen
the exact success probability as determined from the opt
importance function. Each data point and its associated s
dard deviationsPs

were obtained from 20 independent se

of 104 random-walk simulations based on the respective
portance function. The standard deviations of these estim
are plotted as error bars, showing a minimum arounda
'1.3. Even though fora51.3 the success probabilityPs8 is
only about 0.01, rather far from optimal, the importan
sampling procedure based on this bias energy function
~26! with a51.3 still gives a very significant efficienc
boost compared to a direct simulation based on the orig

FIG. 10. ~a! The estimated success probabilitiesPs8 for the
importance-sampled random walks with different choices ofa. The
bias potential isa(Ec2E). ~b! The estimated success probabili
Ps5Ps8I (0) for the original system. The averages from 20 indep
dent measures are plotted, each drawn from 104 random walkers.
The dashed line shows exact solution (8.77231029), which is the
optimal importance function at stateN0. The error bar shows the
estimated standard deviation, which is minimized fora51.3.
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energy landscape, withPs58.77231029. The weighted av-
erage~with weight being the inverse of the standard dev
tion! of these estimates forPs is Ps858.52931029, in good
agreement with the exact solution.

IV. DISCUSSION

The importance sampling approach discussed here sh
interesting similarities with the transition path samplin
~TPS! approach developed by Chandler and co-work
@10,11#. The TPS method samples an ensemble of succes
transition paths through a Metropolis algorithm in which
current successful trajectory is slightly distorted to genera
new trial path. As in our importance sampling scheme, t
algorithm samples predominantly successful transition pa
while preserving the relative probabilities of different su
cessful events, and has shown to be very useful for the s
of rare-event phenomena in complex systems. The major
ference between the TPS scheme and the current import
sampling method is that the latter is based on the use o
explicit importance function. In this manner, one not on
preserves the relative distribution of successful transit
paths, but also retains quantitative information about
amount by which the sampling of successful transition pa
has been enhanced. This information is not available in
TPS approach, where one focuses mainly on the succe
transition events but the ratio of relative probabilities of su
cessful and unsuccessful paths is lost. As a conseque
TPS does not directly yield the absolute transition rates
requires a significant additional effort to compute them us
other methods, e.g., umbrella sampling. Given that this ra
is always known in the present importance sampling fram
work, it is free of this limitation and, in principle, allows
direct estimation of absolute transition rates.

Although it has shown to be very effective in the demo
strated one-dimensional and two-dimensional problems,
extension of the importance sampling scheme to more r
istic problems involving large numbers of degrees of fre
dom remains a challenge. In the context of the pres
method, the main hurdle is the determination of a suita
importance function. In this sense, the problem of sampl
rare transition events has been transformed into a problem
optimizing the importance function. This transformation a
pears promising, given that the optimization of the man
body importance function shows striking similarities
quantum Monte Carlo methods@12#, in which the Schro¨d-
inger’s equation is solved by optimizing the trial many-bo
wave functions.

V. SUMMARY

We have developed an importance sampling method
effectively sampling rare transition events in Markov pr
cesses. The approach is based on the use of an import
function that modifies the transition probabilities such th
the probability of generating successful transition paths
enhanced, while preserving the relative probabilities of d
ferent successful events. In addition, the importance s
pling method enhances the absolute probability of genera

-
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a successful path by aknownamount, which facilitates the
evaluation of absolute transition rates. It is shown that
optimal importance functionI opt exists and can be approx
mated using an iterative stochastic algorithm. Importa
sampling based on the optimal importance function lead
maximum efficiency, for which each simulated sequence
states is successful and the variances in the estimator
statistical quantities are minimized.

The extension of this method to problems involving lar
numbers of degrees of freedom remains a challenge. H
ever, the general approach appears promising, given
similar problems of optimization in high dimensions ha
r.
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been successfully addressed in other areas of computat
sciences, e.g., quantum Monte Carlo.
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